Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues.

نویسندگان

  • Rui Wang
  • Changqing Xu
  • Weimin Zhao
  • Jing Zhang
  • Kun Cao
  • Baofeng Yang
  • Lingyun Wu
چکیده

Activation of a calcium-sensing receptor (Ca-SR) leads to increased intracellular calcium concentration and altered cellular activities. The expression of Ca-SR has been identified in both nonexcitable and excitable cells, including neurons and smooth muscle cells. Whether Ca-SR was expressed and functioning in cardiac myocytes remained unclear. In the present study, the transcripts of Ca-SR were identified in rat heart tissues using RT-PCR that was further confirmed by sequence analysis. Ca-SR proteins were detected in rat ventricular and atrial tissues as well as in isolated cardiac myocytes. Anti-(Ca-SR) Ig did not detect any specific bands after preadsorption with standard Ca-SR antigens. An immunohistochemistry study revealed the presence of Ca-SR in rat cardiac as well as other tissues. An increase in extracellular calcium or gadolinium induced a concentration-dependent sustained increase in [Ca2+]i in isolated ventricular myocytes from adult rats. Spermine (1-10 mm) also increased [Ca2+]i. Pre-treatment of cardiac myocytes with thapsigargin or U73122 abolished the extracellular calcium, gadolinium or spermine-induced increase in [Ca2+]i. The blockade of Na+/Ca2+ exchanger or voltage-dependent calcium channels did not alter the extracellular calcium-induced increase in [Ca2+]i. Finally, extracellular calcium, gadolinium and spermine all increased intracellular inositol 1,4,5-triphosphate (IP3) levels. Our results demonstrated that Ca-SR was expressed in cardiac tissue and cardiomyocytes and its function was regulated by extracellular calcium and spermine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Extracellular Calcium Control, Calcium Sensing, and Regulation of Calcium Regulating Hormones in Heart Failure

Calcium plays a pivotal role in excitation-contraction coupling of cardiomyocytes and many other cellular responses observed in cardiovascular cells. Thus maintaining a healthy status requires very strict regulation of cytoplasmatic but also plasma ionized calcium concentration. Plasma ionized calcium is regulated by calcium sensing and the regulation of calcium uptake and secretion. Under cond...

متن کامل

Ryanodine receptors, voltage-gated calcium channels and their relationship with protein kinase A in the myocardium.

We present a review about the relationship between ryanodine receptors and voltage-gated calcium channels in myocardium, and also how both of them are related to protein kinase A. Ryanodine receptors, which have three subtypes (RyR1-3), are located on the membrane of sarcoplasmic reticulum. Different subtypes of voltage-gated calcium channels interact with ryanodine receptors in skeletal and ca...

متن کامل

Ryanodine receptors, voltage-gated calcium channels and their relationship with protein kinase A

Short title: Ryanodine receptors, voltage-gated calcium channels and PKA Abstract We present the review of the data from the literature about relationship between ryanodine receptors and voltage-gated calcium channels in myocardium, and also how both of them are related to protein kinase A. Ryanodine receptors, which have three subtypes (RyR1-3), are located on the membrane of sarcoplasmic reti...

متن کامل

Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis.

The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, the physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (Gd...

متن کامل

Calcium-Sensing Receptor in Cardiac Physiology

Calcium is a crucial signal molecule in the cardiovascular system. Calcium (Ca 2+ ) acts as a second messenger via changes in intracellular Ca 2+ levels through the actions of calcium channels and pumps. However, it is now well known that calcium may also be an extracellular first messenger through a G-protein-coupled receptor that senses extracellular Ca 2+ concentration, the calcium-sensing r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of biochemistry

دوره 270 12  شماره 

صفحات  -

تاریخ انتشار 2003